Auf dem Weg in den Urlaub den kürzesten oder den schnellsten?

Das sehr junge Kind erkennt, was "schnell" geht, bevor es überhaupt eine Vorstellung von Dauer oder Entfernung hat Jean Piaget. Er kam zu dem Schluss, dass der Begriff der Geschwindigkeit primitiver war als der Begriff der Zeit.

In der quantitativen Welt, an die wir gewöhnt sind, scheint Geschwindigkeit jedoch im Vergleich zu den Vorstellungen von an zweiter Stelle zu stehen Entfernung und von Zeit. Geschwindigkeit ist nur ein Quotient im mathematischen Sinne, dh eine "Distanz / Zeit" -Beziehung.

Das "Lichtjahr" ist in der Alltagssprache ein fast poetisches Wort und repräsentiert eine Entfernung: die Entfernung, die das Licht in einem Jahr zurücklegt. Ebenso macht es Spaß, die Bedeutung von "Dieser Hang ist ein bisschen weit, es ist ein guter 4-stündiger Spaziergang" mit "Oh, Venedig, es ist die nächste Tür!" Zu vergleichen. Es ist 90 Minuten mit dem Flugzeug. Die kurze und schnellere Fahrt ist hier am weitesten entfernt, während die längere nur eine kurze Strecke zurücklegt.

Die "gerade" Linie … wirklich?

Wir haben alle gelernt, dass "die richtig ist der kürzeste Weg von einem Punkt zum anderen ". Dieses Axiom, das die Grundlage des Euklidische Geometrie, ist leicht für ein Blatt Papier oder auf einer Tafel zu gestalten. Andere Geometrien sind möglich. Die "sphärische" Geometrie ist besonders nützlich für Navigatoren oder für Interkontinentalflüge: Der "kürzeste" Weg von Paris nach Los Angeles kann nicht die gerade Linie sein, die "durch" die Erde führt!

Wer in den Bergen spazieren geht oder auf einer kurvenreichen Straße fährt, weiß, dass eine gerade, unpraktische Linie nicht der "kürzeste" Weg ist. Die Komplexität der Welt lässt uns daher Geometrien mit einbeziehen metrischZuweisen einer praktikablen Geschwindigkeit für die verschiedenen möglichen Pfade. Die euklidische Geometrie ist dann nur eine Vielzahl von Geometrien mit einer "einheitlichen" Metrik.

Was ist der kürzeste Weg für das Licht?

Ein berühmtes Beispiel für die Beziehung zwischen Raumeigenschaften und möglicher Geschwindigkeit je nach Standort ist das Prinzip von Fermat. Es beschreibt den Weg der Lichtstrahlen, die nur in einem homogenen Medium geradlinig verlaufen. Es ist vor der Stunde ein "nichteuklidische" Geometrie wo die lokale Metrik durch die gegeben ist"Optischer Index", genannt "Brechungsindex" der Mitte gekreuzt.

Der optische Index regiert die Ausbreitung von Licht sowohl durch eine Glaslinse als auch in einer Flüssigkeit. Beispielsweise empfiehlt der Brillenhersteller häufig Linsen mit hohem Index, die teurer, aber leichter sind, da ihre Dicke für eine bestimmte Korrektur geringer ist. Der optische Index kennzeichnet tatsächlich die Lichtgeschwindigkeit im Medium.

Visualisierung der Lichtbrechung in Luft und in einem transparenten Block mit einem anderen optischen Index als Luft. Das Licht geht nicht in einer geraden Linie.
ajizai / wikipedia

Das Fermats Prinzip gibt an, dass der Lichtstrahl den schnellsten Weg passiert, also die kürzeste Zeit, die nicht unbedingt die kürzeste Entfernung ist. Mit diesem Fermat-Prinzip beschäftigen wir uns nicht nur mit allen Problemen von Linsen aus homogenem Glas, beispielsweise in einem Mikroskop, sondern auch mit komplexeren Problemen wie z Trugbilder bei dem die Glasfaser.

Das Prinzip von Fermat kann auch den Weg des Rettungsschwimmers beschreiben, der viel langsamer schwimmt als er läuft: Um ein Opfer zu retten, erhöht er die Laufstrecke am Strand und verringert die Entfernung, die er im Wasser zurücklegt. .

Erfinden Sie Metriken, um optimale Pfade zu definieren

Durch die Verallgemeinerung bedeutet das Definieren einer „Metrik“, eine Transformation zu bewirken, manchmal durch ein Netz, und den optimalen Pfad zu finden, der in dieser transformierten Welt eine gerade Linie ist. Zum Beispiel zeigt die Karte unten (Credits: SNCF) eine inhomogene Transformation unseres Landes, abhängig von der Länge der Reisen, seit der TGV "Frankreich geschrumpft" hat.

Diese Transformationen sind sehr leistungsfähig, um viele Optimierungsprobleme zu programmieren. Wenn wir also die Details der Reise nach Venedig in "Zeit" -Metrik darstellen möchten, umfassen wir: den Weg mit dem Auto zum Flughafen, die Fußgängerzeit in der Gepäcklinie und bei Sicherheitskontrollen sowie die langen Minuten, in denen Während der Evakuierung von 30 Metern Kabine wurden hundert Passagiere befördert. Auch hier werden regelmäßig verschiedene Optimierungen (Evakuierung von Passagieren oder Aussteigen aus dem Gepäck) durch mathematische Modelle vorgeschlagen.

Einige Metriken haben nichts mit Geschwindigkeit oder Zeit zu tun. Wir sind es gewohnt, Taschenrechner zu routen, die die Kosten (Kraftstoffverbrauch, Maut usw.) berücksichtigen. Wir können uns auch eine Metrik für die Sonneneinstrahlung vorstellen, um je nach Tageszeit oder Breitengrad das Gehen im Schatten oder den Weg des Sonnenbadens zu optimieren.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.